Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3DKP_1)}(2) \setminus P_{f(6WVN_1)}(2)|=69\),
\(|P_{f(6WVN_1)}(2) \setminus P_{f(3DKP_1)}(2)|=101\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01010110000010101001101110100100000100011001101110110110101111110100111011010100111011111010011001101111010001100100011010010110101100111110011100000101110010011011000111101101011110000011001001100011011110000010011101011001001001010011010111000
Pair
\(Z_2\)
Length of longest common subsequence
3DKP_1,6WVN_1
170
4
3DKP_1,1VGC_1
168
2
6WVN_1,1VGC_1
196
2
Newick tree
[
6WVN_1:94.16,
[
3DKP_1:84,1VGC_1:84
]:10.16
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{546
}{\log_{20}
546}-\frac{245}{\log_{20}245})=85.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
3DKP_1
6WVN_1
109
98
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]