Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3DDF_1)}(2) \setminus P_{f(5KQO_1)}(2)|=140\),
\(|P_{f(5KQO_1)}(2) \setminus P_{f(3DDF_1)}(2)|=22\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0000000001010011011101100101100001100110101011010001010010111100110100011000100010111110000011110010000000000110011001000101011110100110100011000010100110010101101111110010001001110100100110011010101011101110010110110001100111000000100011000010111001100010011100111100001100011010100010100110111001101110010000111000111001000101000011111110010100000101001000011001000101010101101000101100100110101101010110010000001010000010000100111001011011011001011101000100100010110000110101000111000001001101001110001001100101001010100101000011101100000011110011100011100011010001101010011101001100110101011101000010001010100000011101011111110011010000100000100111000100111100100101101001010110110111000111001010000101110101100110001000110111101110110110111110010100010111101100011011110100110110100001110100010010110001011011000010011101000111011110010001011010111100110101011000011000001110111000111010011100100010100101110100110010001101100111100011110101110010100010101100100001000011011000011001010000001010011101100000010110010010111110101100110100000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1472
}{\log_{20}
1472}-\frac{427}{\log_{20}427})=267.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3DDF_1
5KQO_1
345
239.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]