Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3CWA_1)}(2) \setminus P_{f(5KPG_1)}(2)|=72\),
\(|P_{f(5KPG_1)}(2) \setminus P_{f(3CWA_1)}(2)|=123\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100101011001011111111011001001100001001111000111011101100010101011101111001101001101000101101111011110111011101011001101111011011111010101101010010011001011010011110101101111110010111011011101011101110100110010011111010100111011010011110001100011110110100010010110001110110001101001
Pair
\(Z_2\)
Length of longest common subsequence
3CWA_1,5KPG_1
195
4
3CWA_1,6HSH_1
174
4
5KPG_1,6HSH_1
181
3
Newick tree
[
5KPG_1:96.30,
[
3CWA_1:87,6HSH_1:87
]:9.30
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{679
}{\log_{20}
679}-\frac{282}{\log_{20}282})=110.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3CWA_1
5KPG_1
142
120.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]