Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3CUE_1)}(2) \setminus P_{f(9JFF_1)}(2)|=81\),
\(|P_{f(9JFF_1)}(2) \setminus P_{f(3CUE_1)}(2)|=94\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111001111000111100001000000100000111100101111110010101101000001000110110111000000000111000000000011010100110011001000110010000101110001011011110001110001011000010010000011101100110010010000110010001011100011000100110010
Pair
\(Z_2\)
Length of longest common subsequence
3CUE_1,9JFF_1
175
4
3CUE_1,6JGA_1
187
4
9JFF_1,6JGA_1
168
5
Newick tree
[
3CUE_1:92.63,
[
9JFF_1:84,6JGA_1:84
]:8.63
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{560
}{\log_{20}
560}-\frac{219}{\log_{20}219})=97.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
3CUE_1
9JFF_1
124
102.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]