Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3CNB_1)}(2) \setminus P_{f(1STP_1)}(2)|=73\),
\(|P_{f(1STP_1)}(2) \setminus P_{f(3CNB_1)}(2)|=65\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10101000101111000001101100110011101010110011011011001010111101111110110100010001101011111101110000100111111000110110101100010011000010001000000
Pair
\(Z_2\)
Length of longest common subsequence
3CNB_1,1STP_1
138
4
3CNB_1,5AOG_1
162
3
1STP_1,5AOG_1
152
4
Newick tree
[
5AOG_1:81.47,
[
3CNB_1:69,1STP_1:69
]:12.47
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{302
}{\log_{20}
302}-\frac{143}{\log_{20}143})=49.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
3CNB_1
1STP_1
60
58.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]