Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3BZC_1)}(2) \setminus P_{f(6BZK_1)}(2)|=227\),
\(|P_{f(6BZK_1)}(2) \setminus P_{f(3BZC_1)}(2)|=5\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10010001100101110101010011111111001001111100000101010000101100010010010000111110100010101011001011000001001011000000001011101111111011100101110001101101001110101110110011100110010110010111000101010111100001101000100001100110001111101000111010101100111010100111100111000101100111011010101010001000111010011000110111001001111111110101110111001101111010101100101010110001000111111101000101111101010000001110110001110100111001110100100111001101010101110110010011101101010011110000010010110010111000101111010010111110101100011001110001011100000100100110001001111101101001101011010001110011100000100111001110010100100001111010011001001100101010010100110010010111110111001001111101110001110101100011001001101101101011010110001110101000110010100110101010100001110100111100111111101001000000000
Pair
\(Z_2\)
Length of longest common subsequence
3BZC_1,6BZK_1
232
4
3BZC_1,1KEO_1
212
4
6BZK_1,1KEO_1
124
3
Newick tree
[
3BZC_1:12.20,
[
1KEO_1:62,6BZK_1:62
]:61.20
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{842
}{\log_{20}
842}-\frac{57}{\log_{20}57})=225.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3BZC_1
6BZK_1
275
146.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]