Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3BXC_1)}(2) \setminus P_{f(1DMQ_1)}(2)|=118\),
\(|P_{f(1DMQ_1)}(2) \setminus P_{f(3BXC_1)}(2)|=58\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100000001010011000101010101010000100000101010010001010110111111110111001101000110000111011000110110100100000111101000001001011001010110110011110000111010001101101110100011101111101100100000000110010111100100010010010000010000111100001100110010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{376
}{\log_{20}
376}-\frac{131}{\log_{20}131})=74.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
3BXC_1
1DMQ_1
95
73
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]