Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3BNH_1)}(2) \setminus P_{f(1QNS_1)}(2)|=114\),
\(|P_{f(1QNS_1)}(2) \setminus P_{f(3BNH_1)}(2)|=69\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00100000001110001000110101100011000100100100000000100110001111111110110000011010001100010010011110100111101010000101101100010100101011001001100110000000001010001101001101111001100000000011010001010100001000011000111101110011000010100001011010011000111010010101000110100110010001100001110000001101100100001000000000100110001000011001110011010100101101110010100100010010101011111010110110011011101000100101011011100111001110100000100110101011110010100010001000111010101001011000000000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{829
}{\log_{20}
829}-\frac{344}{\log_{20}344})=131.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3BNH_1
1QNS_1
166
142
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]