Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3BLY_1)}(2) \setminus P_{f(3COZ_1)}(2)|=157\),
\(|P_{f(3COZ_1)}(2) \setminus P_{f(3BLY_1)}(2)|=25\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000001110110001001110010100111111100011110100011111011110001001111100111101101001101110000010000010011011010110101110011100101001010011100100100011001010110011111000100101010000011110001010010100100010001001000100010001110010000010001001111100001011010010011010001000110001011111100011001100010010100110100101010101101111000011100111011010110110111011001000011100011000110010001010101101000100011100000101100010001100000111111001010100110100110001000110011100010001110101110001000001110001001001101010101111000001001100101101011111110110110111110111000111000000001000001111001111101011010110101011011100000100010101100010
Pair
\(Z_2\)
Length of longest common subsequence
3BLY_1,3COZ_1
182
4
3BLY_1,5CWS_1
184
5
3COZ_1,5CWS_1
154
4
Newick tree
[
3BLY_1:95.84,
[
3COZ_1:77,5CWS_1:77
]:18.84
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{924
}{\log_{20}
924}-\frac{301}{\log_{20}301})=168.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3BLY_1
3COZ_1
218
159.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]