Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3BHN_1)}(2) \setminus P_{f(6VRF_1)}(2)|=66\),
\(|P_{f(6VRF_1)}(2) \setminus P_{f(3BHN_1)}(2)|=91\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000100000000101011001111110010010111100111000001010111001000001110100010100100001111001001111110000110110101000111010110111001111010010001010111011110100111110101101110101101111110011001000010001111101011001100010010010000010000100111
Pair
\(Z_2\)
Length of longest common subsequence
3BHN_1,6VRF_1
157
3
3BHN_1,1NMN_1
140
3
6VRF_1,1NMN_1
163
4
Newick tree
[
6VRF_1:83.08,
[
3BHN_1:70,1NMN_1:70
]:13.08
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{535
}{\log_{20}
535}-\frac{236}{\log_{20}236})=85.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
3BHN_1
6VRF_1
107
95.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]