CoV2D BrowserTM

CoV2D project home | Random page
Parikh vectors
3AWH_1 9NVK_1 5HRX_1 Letter Amino acid
1 2 8 Y Tyrosine
6 5 6 N Asparagine
2 3 3 Q Glutamine
4 12 10 S Serine
2 1 0 W Tryptophan
10 8 12 L Leucine
6 11 12 K Lycine
14 6 6 V Valine
9 6 8 R Arginine
4 5 9 D Aspartic acid
7 17 9 E Glutamic acid
14 10 3 G Glycine
13 8 5 A Alanine
3 6 10 M Methionine
5 8 6 P Proline
9 9 5 T Threonine
0 0 1 C Cysteine
2 1 2 H Histidine
5 21 6 I Isoleucine
6 8 3 F Phenylalanine

3AWH_1|Chains A, B|FMN-binding protein|Desulfovibrio vulgaris (883)
>9NVK_1|Chains A, AA[auth B], BA[auth E], B[auth D], CA[auth G], C[auth F], DA[auth I], D[auth H], EA[auth K], E[auth J], FA[auth M], F[auth L], GA[auth P], G[auth N], HA[auth R], H[auth Q], IA[auth V], I[auth U], JA[auth X], J[auth W], K[auth Y], L[auth Z], M[auth b], N[auth c], O[auth d], P[auth e], Q[auth f], R[auth g], S[auth h], T[auth i], U[auth j], V[auth k], W[auth l], X[auth m], Y[auth n], Z[auth o]|Small heat shock protein HSP16.5|Methanocaldococcus jannaschii (2190)
>5HRX_1|Chains A, B|Protein polybromo-1|Homo sapiens (9606)
Protein code \(c\) LZ-complexity \(\mathrm{LZ}(w)\) Length \(n=|w|\) \(\frac{\mathrm{LZ}(w)}{n /\log_{20} n}\) \(p_w(1)\) \(p_w(2)\) \(p_w(3)\) Sequence \(w=f(c)\)
3AWH , Knot 65 122 0.85 38 96 117
MLPGTFFEVLKNKGVVAIATQGEDGPHLVNTWNSYLKVLDGNRIVVPVGGMHKTEANVARDERVLMTLGSRKVAGRNGPGTGFLIRGSAAFRTDGPEFEAIARFKWARAALVITVVSAEQTL
9NVK , Knot 72 147 0.81 38 110 144
MFGRDPFDSLFERMFKEFFATPMTGTTMIQSSTGIQISGKGFMPISIIEGDQHIKVIAWLPGVNKEDIILNAVGDTLEIRAKRSPLMITESERIIYSEIPEEEEIYRTIKLPATVKEENASAKFENGVLSVILPKAESSIKKGINIE
5HRX , Knot 64 124 0.83 38 111 122
SMSGISPKKSKYMTPMQQKLNEVYEAVKNYTDKRGRRLSAIFLRLPSRSELPDYYLTIKKPMDMEKIRSHMMANKYQDIDSMVEDFVMMFNNACTYNEPESLIYKDALVLHKVLLETRRDLEGD

Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\). Let \(p_w(n)\) be the cardinality of \(P_w(n)\). Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).

\(|P_{f(3AWH_1)}(2) \setminus P_{f(9NVK_1)}(2)|=59\), \(|P_{f(9NVK_1)}(2) \setminus P_{f(3AWH_1)}(2)|=73\). Let \( Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)| \) be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11110110110001111110010011011001000101101001111111100001011000011101100011100111011110101110001101011101011011111011010001
Pair \(Z_2\) Length of longest common subsequence
3AWH_1,9NVK_1 132 3
3AWH_1,5HRX_1 157 3
9NVK_1,5HRX_1 143 3

Newick tree

 
[
	5HRX_1:77.87,
	[
		3AWH_1:66,9NVK_1:66
	]:11.87
]

Let d be the Otu--Sayood distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{269 }{\log_{20} 269}-\frac{122}{\log_{20}122})=46.2\)
Status Protein1 Protein2 d d1/2
Query variables 3AWH_1 9NVK_1 59 54
Was not able to put for d
Was not able to put for d1

In notation analogous to [Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[ \delta= \alpha \mathrm{min} + (1-\alpha) \mathrm{max}= \begin{cases} d &\alpha=0,\\ d_1/2 &\alpha=1/2 \end{cases} \]