Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3AUQ_1)}(2) \setminus P_{f(5YMS_1)}(2)|=114\),
\(|P_{f(5YMS_1)}(2) \setminus P_{f(3AUQ_1)}(2)|=61\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10010010101000000111111010000001000010010111010011101010100101110110110001001111101111100100000111100011011110000010100101001000000010010011001011011101011100101000001111110110100111001111011000100010001000011110011010110011010010000000000101010001010111101110010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{424
}{\log_{20}
424}-\frac{161}{\log_{20}161})=78.2\)
Status
Protein1
Protein2
d
d1/2
Query variables
3AUQ_1
5YMS_1
102
81.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]