Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3ASX_1)}(2) \setminus P_{f(8DZU_1)}(2)|=157\),
\(|P_{f(8DZU_1)}(2) \setminus P_{f(3ASX_1)}(2)|=45\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000010001000000100000011111011010100110110111011001000101010001111001001100101011000000001100110101010011000001110100011111101100010000010000001111111110011010010011110000010011111000011000100001100111001100010011011010010111001001100110011011001001000011010111011111011100000011011101001011011101001111011100010010001100010000000110010000
Pair
\(Z_2\)
Length of longest common subsequence
3ASX_1,8DZU_1
202
3
3ASX_1,5BKM_1
188
4
8DZU_1,5BKM_1
208
4
Newick tree
[
8DZU_1:10.19,
[
3ASX_1:94,5BKM_1:94
]:11.19
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{465
}{\log_{20}
465}-\frac{125}{\log_{20}125})=101.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3ASX_1
8DZU_1
132
89.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]