Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3ARR_1)}(2) \setminus P_{f(1LIN_1)}(2)|=192\),
\(|P_{f(1LIN_1)}(2) \setminus P_{f(3ARR_1)}(2)|=31\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11011010101000101001011100001000110000110101010010100100001010110110111010000101001011100101010010100001110101100010010110101010000000010111100110111010000100111001001101111101100010011100101100100110000111001111000011011000001101001111110000101011101111010011001100000001110100110010100110101011111111100101100111011110010111001010010000100111110001001001011001001111000101110011100011001011011000111100010100111001001101111011110011110110101101101001001001101010101010010111001110001100111110001101100100101011111000010110100000111010010011111110101010010110110011111110110000000000
Pair
\(Z_2\)
Length of longest common subsequence
3ARR_1,1LIN_1
223
3
3ARR_1,4ORH_1
197
4
1LIN_1,4ORH_1
144
4
Newick tree
[
3ARR_1:11.14,
[
4ORH_1:72,1LIN_1:72
]:42.14
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{732
}{\log_{20}
732}-\frac{148}{\log_{20}148})=165.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3ARR_1
1LIN_1
211
131.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]