Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3AQN_1)}(2) \setminus P_{f(7HAT_1)}(2)|=116\),
\(|P_{f(7HAT_1)}(2) \setminus P_{f(3AQN_1)}(2)|=45\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0101110000110000100011011001001100111111110011110010010100010100100110000111001011011111011011010100010100000000100111100011101000100001010010001101010001111001001110111010000000110110110111011101010010111011011001111011000101101101000001100001101111010001000100110011001100000010001010111111111101110010011000110000111111001100100011110010010001101010100001001101100101011001111010100010100110111010101110001110010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{652
}{\log_{20}
652}-\frac{237}{\log_{20}237})=116.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3AQN_1
7HAT_1
149
114
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]