Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3AOB_1)}(2) \setminus P_{f(1ZWG_1)}(2)|=275\),
\(|P_{f(1ZWG_1)}(2) \setminus P_{f(3AOB_1)}(2)|=7\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110111001111111111111111111101111001011111101010011101001000100110001011001101000000010101010100100101101010001011111110010001101000000111111110001010000100011101001100001110101110001101110100100101011011011010010111101110111010010101110001000001101110100010011100110101110000111010101101111011011011001111010110101111011011010000111010100110011011111111101110010101110111111111011111111101001011111111111100111110010011100111100100001101011111111110111111111110011100010101101111011111110111010110111010010100111111001100000000001111100010011101111111101110110011100001111011011111000000011001000010000001001111011111101000111110100110011000010110101001100100111111011111011010110101100111100010010001110110010110010101100010101010000101111010010001111111001001100101001011001000111001101010110101111011000010010101000011101011101111000101101100110011011100101100000101001101011011111101111000101110111111111111111101011000101011110011101001111101100110001011101010110101011110011111111111100111011001110111111101011111111111111000100000010000010000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1088
}{\log_{20}
1088}-\frac{35}{\log_{20}35})=296.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3AOB_1
1ZWG_1
366
189
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]