Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3ACS_1)}(2) \setminus P_{f(6SIR_1)}(2)|=177\),
\(|P_{f(6SIR_1)}(2) \setminus P_{f(3ACS_1)}(2)|=17\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000011110100100101001100011001001011100110001101100011100100010100100000001110111001010011011010111101010010100111000101000110100111111100101001010000011001011011010110100000000001011010100011010110000000000000111110001011000000111100011010110110010011011011100011101011000011011101001000011001001100111011110110000101110110001001100001000000100110110000011010100010110011101111000000111110111001000110110001101010000011000100011011000111111111101000101111001111000110011110010001010100011011111101010001010010001100100000011111001111101110110010110001110110010001001011110011010111010000101110010101011101011111111111011001011110110010011101011110011000001011010001110000111100001111110011101101100000101100001000001010101011110011011010001101011101111000111101000111101011101100010011011000101000111110101010111101001101111001010101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1029
}{\log_{20}
1029}-\frac{187}{\log_{20}187})=229.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3ACS_1
6SIR_1
287
174.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]