Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3AAQ_1)}(2) \setminus P_{f(4CVM_1)}(2)|=101\),
\(|P_{f(4CVM_1)}(2) \setminus P_{f(3AAQ_1)}(2)|=86\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00001111011001001010000000000110100110001011110101001010101011110111001110101011101110000000000100110000010110100101000111011110001001001000011110111101011111100101000001010101001010100111110001000110010011000111010010101100000100110010010001011111011001001111001100011010000100001100100010000101101001000010000110000011110101101000100111000101011111001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{828
}{\log_{20}
828}-\frac{353}{\log_{20}353})=128.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3AAQ_1
4CVM_1
159
142
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]