Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2ZXF_1)}(2) \setminus P_{f(6YJE_1)}(2)|=112\),
\(|P_{f(6YJE_1)}(2) \setminus P_{f(2ZXF_1)}(2)|=28\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101111001111101110001011001000011010100111010100011010011101000110010100010001100011110111011001111101100011001000110000110100011010111000101001101110010010010100110101001100000010000010011101000100011011100010011010010111010111001111110111010100101111010011010010111111011001000101001110100101101001101000001010011010101001010101001001011011001110001110111010101001110100101000100011001000101000000111011101000000100010100111110011001001011010100111101000010111001110000010010111000101010001001010001101001000101001110110101111011001100010100100000110111111110001111000001111100100110001100010000101100010000111111101010010001001010000010010101001101100110101011010100111010001000010010000000
Pair
\(Z_2\)
Length of longest common subsequence
2ZXF_1,6YJE_1
140
4
2ZXF_1,9DRF_1
194
6
6YJE_1,9DRF_1
158
4
Newick tree
[
9DRF_1:93.80,
[
2ZXF_1:70,6YJE_1:70
]:23.80
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1109
}{\log_{20}
1109}-\frac{416}{\log_{20}416})=181.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2ZXF_1
6YJE_1
229
181
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]