Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2ZRW_1)}(2) \setminus P_{f(1VSR_1)}(2)|=134\),
\(|P_{f(1VSR_1)}(2) \setminus P_{f(2ZRW_1)}(2)|=47\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11011000100101111001011000011001111001111101001000001100010111110110110001101001110110011111111000111001010001111001110111110111101101011001001101101011110101100110101010001011001001000101111100010110100101100011001000101100111101100100101010010011011110110110100011001111011100110110111111011111111100110100010011001110101111101000101100001111101001100011010100010000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{504
}{\log_{20}
504}-\frac{136}{\log_{20}136})=108.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2ZRW_1
1VSR_1
133
91.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]