Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2ZAF_1)}(2) \setminus P_{f(9KUF_1)}(2)|=131\),
\(|P_{f(9KUF_1)}(2) \setminus P_{f(2ZAF_1)}(2)|=46\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101010100101000101110011001010000000010010100110001100111010111111101001100011100111101100101110111111111000101000110111010101110110001010101100111110001001100111010011100011100011011011001000100100101011001111110000110000010011101011101000110001001011000110011101011100111101111111111010111001111100000110001100001100110001010000111101100100011010101011100010000111001101101111000100101101100110011101101110000100111100001111001000100001
Pair
\(Z_2\)
Length of longest common subsequence
2ZAF_1,9KUF_1
177
4
2ZAF_1,2KNE_1
197
4
9KUF_1,2KNE_1
160
3
Newick tree
[
2ZAF_1:97.75,
[
9KUF_1:80,2KNE_1:80
]:17.75
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{658
}{\log_{20}
658}-\frac{219}{\log_{20}219})=123.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2ZAF_1
9KUF_1
159
118
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]