Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2YPF_1)}(2) \setminus P_{f(1BIG_1)}(2)|=118\),
\(|P_{f(1BIG_1)}(2) \setminus P_{f(2YPF_1)}(2)|=20\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100110000000010101000110000111101100101111000111110111000011111101000111111001011011011101110101111010010110110011101101101100110111101010011111000110011001001111100101101001111100111001100100111110010110100111110011100110010111111001011010011111001110011001001111100101101001111100111001100101111110010110100111110011100110010111111001011010011111001110011001011111100101101001111100011001100100111110010110100111110001100110010011111001011010011111001110011001001111100101101001111100111001100101111110010110100111110011100110010111111001011010011111000110011001001111100101101001111100011001100100111110010110100111110001100110010011111001011010011111001110011001001111100111101001111100011001100100111110010110100111110011101110011101001011001110000000
Pair
\(Z_2\)
Length of longest common subsequence
2YPF_1,1BIG_1
138
2
2YPF_1,3OPF_1
138
4
1BIG_1,3OPF_1
170
2
Newick tree
[
3OPF_1:80.02,
[
2YPF_1:69,1BIG_1:69
]:11.02
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{795
}{\log_{20}
795}-\frac{37}{\log_{20}37})=221.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2YPF_1
1BIG_1
89
51.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]