Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2XUP_1)}(2) \setminus P_{f(1XUD_1)}(2)|=163\),
\(|P_{f(1XUD_1)}(2) \setminus P_{f(2XUP_1)}(2)|=40\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:010001011101011010110101111110111111110111100011110100110111010010010000100101110100110100010000101011010101101011111101111001110101001011101011111010001101111111100011101111000111011000111111011010111001111011101101100011001110010101111010110100010111011101111111000011101000110011000101110001101011111010110001011100101001011111100010111101111100000011001011111011110100111011110000110100100100110111100011011101110111011010101100010010111111110100101111111010100000001110011001001100101001000001011100011000101010110100110100011100111011010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{714
}{\log_{20}
714}-\frac{171}{\log_{20}171})=153.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2XUP_1
1XUD_1
201
130.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]