Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2XHA_1)}(2) \setminus P_{f(5UIQ_1)}(2)|=44\),
\(|P_{f(5UIQ_1)}(2) \setminus P_{f(2XHA_1)}(2)|=116\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001110100100011101010101001001001011100111010001111010010011100100000000011001110111011001001111000000100101011010010011100101000100111011000010010010010111010011101010101100000001010000000111
Pair
\(Z_2\)
Length of longest common subsequence
2XHA_1,5UIQ_1
160
3
2XHA_1,4BGQ_1
170
3
5UIQ_1,4BGQ_1
164
5
Newick tree
[
4BGQ_1:84.65,
[
2XHA_1:80,5UIQ_1:80
]:4.65
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{516
}{\log_{20}
516}-\frac{193}{\log_{20}193})=93.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
2XHA_1
5UIQ_1
117
92.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]