Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2XFX_1)}(2) \setminus P_{f(1JMQ_1)}(2)|=157\),
\(|P_{f(1JMQ_1)}(2) \setminus P_{f(2XFX_1)}(2)|=22\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000100100110011100111101101000011010001001000100111000110010000010000111000110010100000011000100101001100101001000010010001110001001011001101000010111110010001010010110001001000110101101010001000001010011111010010101000100000010110001010101001111111010000000010001100110101011
Pair
\(Z_2\)
Length of longest common subsequence
2XFX_1,1JMQ_1
179
3
2XFX_1,3LXJ_1
175
3
1JMQ_1,3LXJ_1
130
2
Newick tree
[
2XFX_1:95.05,
[
3LXJ_1:65,1JMQ_1:65
]:30.05
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{323
}{\log_{20}
323}-\frac{46}{\log_{20}46})=89.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
2XFX_1
1JMQ_1
113
65
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]