Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2WVP_1)}(2) \setminus P_{f(5MNX_1)}(2)|=115\),
\(|P_{f(5MNX_1)}(2) \setminus P_{f(2WVP_1)}(2)|=75\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0000010101111001001010100101110101010110111011110000111000110010110010101000110000101110111000100010011000101001011101010100010101110100110010001010001000011000100011101000100110100000010100001010111011000101000111001001010001000100100111101001001101010011010000010000100111110001000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{509
}{\log_{20}
509}-\frac{223}{\log_{20}223})=82.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
2WVP_1
5MNX_1
109
95.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]