Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2VWZ_1)}(2) \setminus P_{f(8QXA_1)}(2)|=64\),
\(|P_{f(8QXA_1)}(2) \setminus P_{f(2VWZ_1)}(2)|=97\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01001100110010100101001111101101001010111000001110010110000000011001011101001011010111000111111001100111001101001010110111110111011001101001000111001110001100100111001100000010000011101110101101111001001001100111110110110010101000011011000001111100100100111001000001010110110110011001101011100011100111
Pair
\(Z_2\)
Length of longest common subsequence
2VWZ_1,8QXA_1
161
4
2VWZ_1,8TXO_1
160
3
8QXA_1,8TXO_1
173
3
Newick tree
[
8QXA_1:84.70,
[
2VWZ_1:80,8TXO_1:80
]:4.70
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{716
}{\log_{20}
716}-\frac{302}{\log_{20}302})=114.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2VWZ_1
8QXA_1
143
123.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]