Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2VJL_1)}(2) \setminus P_{f(1KSW_1)}(2)|=75\),
\(|P_{f(1KSW_1)}(2) \setminus P_{f(2VJL_1)}(2)|=83\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10011011011010010111100011111110110100010101001110001010010101100000010101001010011001100101110011111100111010010010101111010101010100010100011000111110011101110101111100001101111111110100001010011111001110110101000001000111100101010111000101101001001101101111101111100011000100010101110111010011001010001100010101001101101100011000010100111001110111101001100101001101101100101001011111010110101001111100000110011100101001010011
Pair
\(Z_2\)
Length of longest common subsequence
2VJL_1,1KSW_1
158
3
2VJL_1,4JWP_1
192
3
1KSW_1,4JWP_1
192
4
Newick tree
[
4JWP_1:10.03,
[
2VJL_1:79,1KSW_1:79
]:22.03
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{880
}{\log_{20}
880}-\frac{428}{\log_{20}428})=120.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2VJL_1
1KSW_1
156
150.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]