Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2VHW_1)}(2) \setminus P_{f(1LTK_1)}(2)|=74\),
\(|P_{f(1LTK_1)}(2) \setminus P_{f(2VHW_1)}(2)|=86\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10111100000001011101111101000100111011110101100101011110111010011101011101001111001010010111011011100100011100100011000100101111111110011101110111001100011011111111110110111111101100110110111101011010100100101010101000000100101110010111111111110110110001110101111110111001101010010000010111000110011011101100000110010110110110011011000011110110000111100011001111100110111000000
Pair
\(Z_2\)
Length of longest common subsequence
2VHW_1,1LTK_1
160
6
2VHW_1,7JRH_1
191
3
1LTK_1,7JRH_1
203
3
Newick tree
[
7JRH_1:10.99,
[
2VHW_1:80,1LTK_1:80
]:23.99
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{802
}{\log_{20}
802}-\frac{377}{\log_{20}377})=114.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2VHW_1
1LTK_1
144
135.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]