Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2RDG_1)}(2) \setminus P_{f(3JTJ_1)}(2)|=84\),
\(|P_{f(3JTJ_1)}(2) \setminus P_{f(2RDG_1)}(2)|=111\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0010100010001000000101010010100010010110000000101010000010010000101111001010010000111100000000100100101110000100000100000010000101001010100011000010000100001010100101001010001000011011010010010101
Pair
\(Z_2\)
Length of longest common subsequence
2RDG_1,3JTJ_1
195
3
2RDG_1,1GTK_1
171
4
3JTJ_1,1GTK_1
150
4
Newick tree
[
2RDG_1:96.62,
[
1GTK_1:75,3JTJ_1:75
]:21.62
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{449
}{\log_{20}
449}-\frac{196}{\log_{20}196})=74.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
2RDG_1
3JTJ_1
98
86.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]