2RAX_1|Chains A, C[auth E], E[auth X]|Baculoviral IAP repeat-containing protein 5|Homo sapiens (9606)
>8RMS_1|Chain A|Polymerase acidic protein|Influenza A virus (A/Zhejiang/DTID-ZJU01/2013(H7N9)) (1318616)
>2VVH_1|Chains A, B, C, D|Green to red photoconvertible GFP-like protein EosFP|Lobophyllia hemprichii (46758)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2RAX_1)}(2) \setminus P_{f(8RMS_1)}(2)|=19\),
\(|P_{f(8RMS_1)}(2) \setminus P_{f(2RAX_1)}(2)|=219\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100111101111101110000100100111101010010011011110010000101100110100101101000110000000010111010001001011011010000100011000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{839
}{\log_{20}
839}-\frac{123}{\log_{20}123})=201.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2RAX_1
8RMS_1
257
149.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]