Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2RAV_1)}(2) \setminus P_{f(2BQJ_1)}(2)|=131\),
\(|P_{f(2BQJ_1)}(2) \setminus P_{f(2RAV_1)}(2)|=69\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100111101110110100001100010110110101101111010101110010010000110101010110011100110001110001011111000011101110000101001001100110011010111010100100001101011100000001110110001101011110101010000011001100111010001011011001011001111111101000101110010111000110011001111
Pair
\(Z_2\)
Length of longest common subsequence
2RAV_1,2BQJ_1
200
3
2RAV_1,3MUO_1
196
4
2BQJ_1,3MUO_1
216
3
Newick tree
[
2BQJ_1:10.02,
[
2RAV_1:98,3MUO_1:98
]:8.02
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{391
}{\log_{20}
391}-\frac{130}{\log_{20}130})=79.0\)
Status
Protein1
Protein2
d
d1/2
Query variables
2RAV_1
2BQJ_1
97
74
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]