Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2QOC_1)}(2) \setminus P_{f(7YIY_1)}(2)|=45\),
\(|P_{f(7YIY_1)}(2) \setminus P_{f(2QOC_1)}(2)|=96\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000100110010100101001111101101001010110000101110010110000000011101011101001011010111000011111000100101001100001010110111110111011001001101000111001110001100100111001100010110000110111010010111000100100110011111011001001010100001101100100111110011110011100100000001010011011001100110101100111010011100001010010001011011101000011011000000011010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{906
}{\log_{20}
906}-\frac{344}{\log_{20}344})=151.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2QOC_1
7YIY_1
191
152.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]