Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2QII_1)}(2) \setminus P_{f(7XXP_1)}(2)|=66\),
\(|P_{f(7XXP_1)}(2) \setminus P_{f(2QII_1)}(2)|=83\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11010100000101010111001010010101001110011111110110101101001010110111100001110111001101111001111001110001100110100100000011010001010001101000101001110011111000010110100110010001011000001100000010011111100101100100001011101110101111111101000110110101111100010011111010011111001101100111000100101101011101001010001011000000110001001010011011011111110000111000110010001001010011001010011000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{894
}{\log_{20}
894}-\frac{386}{\log_{20}386})=135.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2QII_1
7XXP_1
168
149.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]