Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2PUW_1)}(2) \setminus P_{f(4GXX_1)}(2)|=84\),
\(|P_{f(4GXX_1)}(2) \setminus P_{f(2PUW_1)}(2)|=83\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1011000110001100100110010101010001101111001100100000111110100000011000110010011101011001100001110000011100010010011110001001110111100110010000001101011101111000100000111111110100001000100001101100110010011010001001000010000011111010011011011101001001000111110100111111000111111100001110110110010100101111000101110000100010110010010111011110110011110011010110011001010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{698
}{\log_{20}
698}-\frac{331}{\log_{20}331})=100.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2PUW_1
4GXX_1
126
119.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]