Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2PTG_1)}(2) \setminus P_{f(4BKM_1)}(2)|=79\),
\(|P_{f(4BKM_1)}(2) \setminus P_{f(2PTG_1)}(2)|=75\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111101010011111110001011110011011110111101111001100110000100001010010001110110011011100101101110010011101000000111111010011011010110101110011011010011100000101111000000110110011111001101111001100011110111100101110000001110110101101001011110001101110110001101110000101110001000011011111101110110110101001101110110000101
Pair
\(Z_2\)
Length of longest common subsequence
2PTG_1,4BKM_1
154
4
2PTG_1,5BRF_1
167
4
4BKM_1,5BRF_1
175
4
Newick tree
[
5BRF_1:88.18,
[
2PTG_1:77,4BKM_1:77
]:11.18
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{628
}{\log_{20}
628}-\frac{309}{\log_{20}309})=88.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
2PTG_1
4BKM_1
109
106.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]