Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2PBP_1)}(2) \setminus P_{f(5CPI_1)}(2)|=97\),
\(|P_{f(5CPI_1)}(2) \setminus P_{f(2PBP_1)}(2)|=47\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100110111000111111011010110110001110111110110000010111101010111111010011000110101100110100101100111111011111111011100011110011011110101111111110001001111001101110110101001001111001101011100010111011001111101100110011001100110100001011110000001111110000101010
Pair
\(Z_2\)
Length of longest common subsequence
2PBP_1,5CPI_1
144
3
2PBP_1,1KDD_1
152
2
5CPI_1,1KDD_1
110
3
Newick tree
[
2PBP_1:79.36,
[
5CPI_1:55,1KDD_1:55
]:24.36
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{397
}{\log_{20}
397}-\frac{139}{\log_{20}139})=77.7\)
Status
Protein1
Protein2
d
d1/2
Query variables
2PBP_1
5CPI_1
97
73.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]