Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2OQV_1)}(2) \setminus P_{f(3CTJ_1)}(2)|=138\),
\(|P_{f(3CTJ_1)}(2) \setminus P_{f(2OQV_1)}(2)|=36\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:000000100010000010100101100000100000011110100100011100001001100100001010101111000010010000010001001000011000011000011010111001101100010101010110001010100011001100110000110100111101010111010100001111000100000100100101101011110101011110000100100100101011101111000100101100001010110010000110100000001010011100010100011110101001010101001001100001000100101000000110010101111011000010010000011111001001010000010010001010000000101000100001000111111001000100011011000011001100101100010111100001100111110100000011110101110000100110101100110000111101010101001001101100011010100010110010011110000111111001101001111010111001111111001000001000001111010001000000011001001001001110101000101000101001110111010111000000111000100010001001100010
Pair
\(Z_2\)
Length of longest common subsequence
2OQV_1,3CTJ_1
174
5
2OQV_1,1XPC_1
217
4
3CTJ_1,1XPC_1
177
3
Newick tree
[
1XPC_1:10.69,
[
2OQV_1:87,3CTJ_1:87
]:15.69
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1040
}{\log_{20}
1040}-\frac{314}{\log_{20}314})=193.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2OQV_1
3CTJ_1
248
175.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]