Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2OEL_1)}(2) \setminus P_{f(8HSN_1)}(2)|=70\),
\(|P_{f(8HSN_1)}(2) \setminus P_{f(2OEL_1)}(2)|=81\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10111100110000010001011111101101001111000010000101111001100001010110010011101101010101011111100110101010101101011001000111101110110001110001111011011110011010001000111110110000111000111100010010111001000010001011010100111000100110111011110111011011011000001111111011101110100101111011110110111101111101010111000011111011000001110111110111011111111001110011011111010101111110110111011111011011110001100110011110101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{813
}{\log_{20}
813}-\frac{400}{\log_{20}400})=111.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2OEL_1
8HSN_1
138
135.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]