Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2ODR_1)}(2) \setminus P_{f(4AJY_1)}(2)|=163\),
\(|P_{f(4AJY_1)}(2) \setminus P_{f(2ODR_1)}(2)|=20\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000111101001100001101100010011100001101001000010101111000110001001001010111000101111000010001110111110001011111010111000010010011101000000100110100010101001110100110100011101100111010010110001010001001111010011000111101101000100000000001100001001111011010010111011100111001011100000000010000010100101001101101110011110001101111011111001111010110100110101000010000110110100111100100100011000100001001001110001011000001010110000100111101100101001011111001011000100110010001110110010110101000100111000001010111100100101010011100110000110101111101010100000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
Pair
\(Z_2\)
Length of longest common subsequence
2ODR_1,4AJY_1
183
3
2ODR_1,3SWE_1
146
5
4AJY_1,3SWE_1
177
3
Newick tree
[
4AJY_1:95.00,
[
2ODR_1:73,3SWE_1:73
]:22.00
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{783
}{\log_{20}
783}-\frac{118}{\log_{20}118})=188.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2ODR_1
4AJY_1
195
117
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]