Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2NYN_1)}(2) \setminus P_{f(5PSZ_1)}(2)|=178\),
\(|P_{f(5PSZ_1)}(2) \setminus P_{f(2NYN_1)}(2)|=30\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100100100000000101010001011110001010011011001011010000011011010000100110010110110011111101110000100100011111001110011110101111101000101101101011001011101110101001101110101111001010111101010101010010110110010101101110011111010011011110010000110111111011010110100001011100001011011110011011100011000101000000001100000100110011111011001100101010010001110100010001101110011111001000111110010101111101010011110111000001011101101010011111010100110011001001000100010001011000101100011111111101101000000100010101011000100110011100100001011000001100011010101111111101100111010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{723
}{\log_{20}
723}-\frac{156}{\log_{20}156})=160.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2NYN_1
5PSZ_1
202
127
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]