Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2NYF_1)}(2) \setminus P_{f(5SUS_1)}(2)|=250\),
\(|P_{f(5SUS_1)}(2) \setminus P_{f(2NYF_1)}(2)|=6\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10100100010001011100000011011000101001101100100101000101101101000010011001011011001111110111000011010001111100111001011010111110100010110110101100100110111010100110111010111100101111110101010101001011011001111010101001111101001101111001001011111011101111011010000101110000101101101001101100001100010100000100110000010011011111101100100010101001000111010001000110111001110100100011111001010111110101001111011100000101110110101001111101010011001100100100010001010101000010110001111111110110100001010001000101001010011001110110010101100000010001101010111111110110011001000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{585
}{\log_{20}
585}-\frac{16}{\log_{20}16})=175.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2NYF_1
5SUS_1
223
115
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]