Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2MPS_1)}(2) \setminus P_{f(1ESQ_1)}(2)|=49\),
\(|P_{f(1ESQ_1)}(2) \setminus P_{f(2MPS_1)}(2)|=127\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00010110011100001110000011010111101100111000000100111011001100010000000110000011101111101010000010011000111
Pair
\(Z_2\)
Length of longest common subsequence
2MPS_1,1ESQ_1
176
3
2MPS_1,6MGU_1
186
4
1ESQ_1,6MGU_1
144
4
Newick tree
[
2MPS_1:95.92,
[
1ESQ_1:72,6MGU_1:72
]:23.92
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{391
}{\log_{20}
391}-\frac{107}{\log_{20}107})=86.8\)
Status
Protein1
Protein2
d
d1/2
Query variables
2MPS_1
1ESQ_1
110
75.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]