Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2LEA_1)}(2) \setminus P_{f(8USC_1)}(2)|=40\),
\(|P_{f(8USC_1)}(2) \setminus P_{f(2LEA_1)}(2)|=108\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000111101001101011001101010010111010110010100100000100100110001011010110000000001111101000001001101101111010010101100101100000
Pair
\(Z_2\)
Length of longest common subsequence
2LEA_1,8USC_1
148
3
2LEA_1,1HBN_1
205
3
8USC_1,1HBN_1
173
4
Newick tree
[
1HBN_1:10.83,
[
2LEA_1:74,8USC_1:74
]:26.83
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{369
}{\log_{20}
369}-\frac{135}{\log_{20}135})=71.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
2LEA_1
8USC_1
92
69
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]