Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2KCW_1)}(2) \setminus P_{f(1ANC_1)}(2)|=62\),
\(|P_{f(1ANC_1)}(2) \setminus P_{f(2KCW_1)}(2)|=108\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111010000000100111110001010001101000001001100111011111110000011111110100101111010101011101110011011101000100000011110001110101000100110101110110111
Pair
\(Z_2\)
Length of longest common subsequence
2KCW_1,1ANC_1
170
3
2KCW_1,1JRX_1
213
3
1ANC_1,1JRX_1
191
4
Newick tree
[
1JRX_1:10.98,
[
2KCW_1:85,1ANC_1:85
]:20.98
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{370
}{\log_{20}
370}-\frac{147}{\log_{20}147})=67.4\)
Status
Protein1
Protein2
d
d1/2
Query variables
2KCW_1
1ANC_1
85
70.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]