Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2KAV_1)}(2) \setminus P_{f(3HNZ_1)}(2)|=34\),
\(|P_{f(3HNZ_1)}(2) \setminus P_{f(2KAV_1)}(2)|=154\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000000000111101001100010110000101100001011001100101010011011010011011011111101001011110111101001001011111000111001010110101000
Pair
\(Z_2\)
Length of longest common subsequence
2KAV_1,3HNZ_1
188
7
2KAV_1,7PXT_1
174
4
3HNZ_1,7PXT_1
170
4
Newick tree
[
2KAV_1:92.34,
[
7PXT_1:85,3HNZ_1:85
]:7.34
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{556
}{\log_{20}
556}-\frac{129}{\log_{20}129})=125.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2KAV_1
3HNZ_1
159
102.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]