Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2JQX_1)}(2) \setminus P_{f(5BMX_1)}(2)|=155\),
\(|P_{f(5BMX_1)}(2) \setminus P_{f(2JQX_1)}(2)|=29\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110010000101010100110001111011011111001001100111000011100001011100100001111000110001100110111010010100011000100011101111110100110110101101001101001110011110100100100111110011000111001000011110110001010100100001001101110010111100111000110101010101011000110100111011100110000011110100011100011111010100010001001100100000001101001010100111100110110111110001001101110111011111001010000001010110101011001111001100100111111001011110000000101000110100011110011100010010011011111000010001110100000110111011010101101111110111010000100101110011110101101011000000100101011000101010111001101111001010100100010001011110110110011100011010011110001010100001101100111000010101001101100001101100111101100011011001111110010100011101101000000
Pair
\(Z_2\)
Length of longest common subsequence
2JQX_1,5BMX_1
184
4
2JQX_1,7NCO_1
178
4
5BMX_1,7NCO_1
184
4
Newick tree
[
5BMX_1:92.97,
[
2JQX_1:89,7NCO_1:89
]:3.97
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{971
}{\log_{20}
971}-\frac{248}{\log_{20}248})=195.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2JQX_1
5BMX_1
246
163
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]