Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2JJF_1)}(2) \setminus P_{f(5NUK_1)}(2)|=134\),
\(|P_{f(5NUK_1)}(2) \setminus P_{f(2JJF_1)}(2)|=38\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11111001111101001001001110011101101110100011001101101000101101110011110111110000101011011100100001001111011001101110111101111011111100110111010000001011011110011010111010010010100001010101101011010110101110011111101011001011100010011011101101011000101011111001000101111100100101101011100010111011111000010111110010011001111100110011101001101001101101011100110010010101001110111111010101110110110010000110011001111111110010101110100101011111100111110
Pair
\(Z_2\)
Length of longest common subsequence
2JJF_1,5NUK_1
172
4
2JJF_1,3VAF_1
178
4
5NUK_1,3VAF_1
142
3
Newick tree
[
2JJF_1:92.36,
[
5NUK_1:71,3VAF_1:71
]:21.36
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{611
}{\log_{20}
611}-\frac{162}{\log_{20}162})=129.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2JJF_1
5NUK_1
157
106.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]