Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2JHC_1)}(2) \setminus P_{f(6IRU_1)}(2)|=174\),
\(|P_{f(6IRU_1)}(2) \setminus P_{f(2JHC_1)}(2)|=32\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11010111010001001100111111010100010011100100100101010100101001010111110000010110110010101100110000101100011000101001110110001101110101001001001010100101110111101001011001000100001101100110010010011010100110100001101001110100111100001011100111000001100101100100111101000000100001000011000110011001111100111000110000000010001110111010100100110101000100010101010011000100110100100010110001100101100011100000101011010000011101010011000111011110111000001111000111010000101101011111111001011000100011111011101001110111101010011110100011010010100010010011101010101011011010011111011101010000001001000110110100011001101000111110000001110011010011011001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{852
}{\log_{20}
852}-\frac{208}{\log_{20}208})=177.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2JHC_1
6IRU_1
228
147.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]