Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(2JGT_1)}(2) \setminus P_{f(4KGS_1)}(2)|=193\),
\(|P_{f(4KGS_1)}(2) \setminus P_{f(2JGT_1)}(2)|=16\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10011101011110110111000110010111100001100110011111100100100111010001111000011101010111110011001101001001101010001010011001010011111001011011110011101001110100010100100010101101000010010001101100110111101100111011110011111000111111001001111110101100101101010111101000110111111000101011011001011010111011101000100110100000011001011011101111011000000111111100000111110111011101011011101110111000101000110100111110111011111110
Pair
\(Z_2\)
Length of longest common subsequence
2JGT_1,4KGS_1
209
3
2JGT_1,3DGH_1
144
4
4KGS_1,3DGH_1
213
4
Newick tree
[
4KGS_1:11.51,
[
2JGT_1:72,3DGH_1:72
]:42.51
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{479
}{\log_{20}
479}-\frac{57}{\log_{20}57})=129.\)
Status
Protein1
Protein2
d
d1/2
Query variables
2JGT_1
4KGS_1
164
92
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]